复方鱼腥草合剂2岁用量:耗散结构是什么意思?

来源:百度文库 编辑:高校问答 时间:2024/04/28 04:54:48
“生态规划”中的耗散结构是什么意思?
生态规划的复习题,请尽量详细!谢谢!

耗散结构是自组织现象中的重要部分,它是在开放的远离平衡条件下,在与外界交换物质和能量的过程中,通过能量耗散和内部非线性动力学机制的作用,经过突变而形成并持久稳定的宏观有序结构。

耗散结构理论的创始人是伊里亚·普里戈金(Ilya Prigogine)教授,由于对非平衡热力学尤其是建立耗散结构理论方面的贡献,他荣获了1977年诺贝尔化学奖。普里戈金的早期工作在化学热力学领域,1945年得出了最小熵产生原理,此原理和翁萨格倒易关系一起为近平衡态线性区热力学奠定了理论基础。普里戈金以多年的努力,试图把最小熵产生原理延拓到远离平衡的非线性区去,但以失败告终,在研究了诸多远离平衡现象后,使他认识到系统在远离平衡态时,其热力学性质可能与平衡态、近平衡态有重大原则差别。以普里戈金为首的布鲁塞尔学派又经过多年的努力,终于建立起一种新的关于非平衡系统自组织的理论——耗散结构理论。这一理论于1969年由普里戈金在一次“理论物理学和生物学”的国际会议上正式提出。

耗散结构理论提出后,在自然科学和社会科学的很多领域如物理学、天文学、生物学、经济学、哲学等都产生了巨大影响。著名未来学家阿尔文·托夫勒在评价普里戈金的思想时,认为它可能代表了一次科学革命。

耗散结构理论可概括为:一个远离平衡态的非线性的开放系统(不管是物理的、化学的、生物的乃至社会的、经济的系统)通过不断地与外界交换物质和能量,在系统内部某个参量的变化达到一定的阈值时,通过涨落,系统可能发生突变即非平衡相变,由原来的混沌无序状态转变为一种在时间上、空间上或功能上的有序状态。这种在远离平衡的非线性区形成的新的稳定的宏观有序结构,由于需要不断与外界交换物质或能量才能维持,因此称之为“耗散结构”(dissipative structure)。[5]可见,要理解耗散结构理论,关键是弄清楚如下几个概念:远离平衡态、非线性、开放系统、涨落、突变。

(1)远离平衡态

远离平衡态是相对于平衡态和近平衡态而言的。平衡态是指系统各处可测的宏观物理性质均匀(从而系统内部没有宏观不可逆过程)的状态,它遵守热力学第一定律:dE=dQ-pdV,即系统内能的增量等于系统所吸收的热量减去系统对外所做的功;热力学第二定律:dS/dt>=0,即系统的自发运动总是向着熵增加的方向;和波尔兹曼有序性原理:pi=e-Ei/kT,即温度为T的系统中内能为Ei的子系统的比率为pi.

近平衡态是指系统处于离平衡态不远的线性区,它遵守昂萨格(Onsager)倒易关系和最小熵产生原理。前者可表述为:Lij=Lji,即只要和不可逆过程i相应的流Ji受到不可逆过程j的力Xj的影响,那么,流Ji也会通过相等的系数Lij受到力Xi的影响。后者意味着,当给定的边界条件阻止系统达到热力学平衡态(即零熵产生)时,系统就落入最小耗散(即最小熵产生)的态。

远离平衡态是指系统内可测的物理性质极不均匀的状态,这时其热力学行为与用最小熵产生原理所预言的行为相比,可能颇为不同,甚至实际上完全相反,正如耗散结构理论所指出的,系统走向一个高熵产生的、宏观上有序的状态。

(2)非线性

系统产生耗散结构的内部动力学机制,正是子系统间的非线性相互作用,在临界点处,非线性机制放大微涨落为巨涨落,使热力学分支失稳,在控制参数越过临界点时,非线性机制对涨落产生抑制作用,使系统稳定到新的耗散结构分支上。

(3)开放系统

热力学第二定律告诉我们,一个孤立系统的熵一定会随时间增大,熵达到极大值,系统达到最无序的平衡态,所以孤立系统绝不会出现耗散结构。那么开放系统为什么会出现本质上不同于孤立系统的行为呢?其实,在开放的条件下,系统的熵增量dS是由系统与外界的熵交换deS和系统内的熵产生diS两部分组成的,即:dS=deS+diS
热力学第二定律只要求系统内的熵产生非负,即diS>=0,然而外界给系统注入的熵deS可为正、零或负,这要根据系统与其外界的相互作用而定,在deS<0的情况下,只要这个负熵流足够强,它就除了抵消掉系统内部的熵产生diS外,还能使系统的总熵增量dS为负,总熵S减小,从而使系统进入相对有序的状态。所以对于开放系统来说,系统可以通过自发的对称破缺从无序进入有序的耗散结构状态。

(4)涨落

一个由大量子系统组成的系统,其可测的宏观量是众多子系统的统计平均效应的反映。但系统在每一时刻的实际测度并不都精确地处于这些平均值上,而是或多或少有些偏差,这些偏差就叫涨落,涨落是偶然的、杂乱无章的、随机的。

在正常情况下,由于热力学系统相对于其子系统来说非常大,这时涨落相对于平均值是很小的,即使偶尔有大的涨落也会立即耗散掉,系统总要回到平均值附近,这些涨落不会对宏观的实际测量产生影响,因而可以被忽略掉。然而,在临界点(即所谓阈值)附近,情况就大不相同了,这时涨落可能不自生自灭,而是被不稳定的系统放大,最后促使系统达到新的宏观态。

当在临界点处系统内部的长程关联作用产生相干运动时,反映系统动力学机制的非线性方程具有多重解的可能性,自然地提出了在不同结果之间进行选择的问题,在这里瞬间的涨落和扰动造成的偶然性将支配这种选择方式,所以普里戈金提出涨落导致有序的论断,它明确地说明了在非平衡系统具有了形成有序结构的宏观条件后,涨落对实现某种序所起的决定作用。

(5)突变

阈值即临界值对系统性质的变化有着根本的意义。在控制参数越过临界值时,原来的热力学分支失去了稳定性,同时产生了新的稳定的耗散结构分支,在这一过程中系统从热力学混沌状态转变为有序的耗散结构状态,其间微小的涨落起到了关键的作用。这种在临界点附近控制参数的微小改变导致系统状态明显的大幅度变化的现象,叫做突变。耗散结构的出现都是以这种临界点附近的突变方式实现的。

耗散结构 (dissipative structure) 关于“耗散结构”的理论是物理学中非平衡统计的一 个重要新分支,是由比利时科学家伊里亚·普里戈津(I.Prigogine)于20世纪70年代提出的,由 于这一成就,普里戈津获1977年诺贝尔化学奖。差不多是同一时间,西德物理学家赫尔曼·哈肯 (H.Haken)提出了从研究对象到方法都与耗散结构相似的“协同学”(Syneraetics),哈肯于 1981年获美国富兰克林研究院迈克尔逊奖。现在耗散结构理论和协同学通常被并称为自组织 理论。 我们首先从几个例子看一下究竟什么是耗散结构。天空中的云通常是不规则分布的,但有 时蓝天和白云会形成蓝白相间的条纹,叫做天街,这是一种云的空间结构。容器装有液体,上下 底分别同不同温度的热源接触,下底温度较上底高,当两板间温差超过一定阈值时,液体内部就 会形成因对流而产生的六角形花纹,这就是著名的贝纳德效应,它是流体的一种空间结构。在贝 洛索夫—一萨波金斯基反应中,当用适当的催化剂和指示剂作丙二酸的溴酸氧化反应时,反应介 质的颜色会在红色和蓝色之间作周期性变换,这类现象一般称为化学振荡或化学钟,是一种时间 结构。在某些条件下这类反应的反应介质还可以出现许多漂亮的花纹·,此即萨波金斯基花纹,它 展示的是一种空间结构。在另外一些条件下,萨波金斯基花纹会成同心圆或螺旋状向外扩散,象 波一样在介质中传播,这就是所谓化学波,这是一种时间一一空间结构。诸如此类的例子很多, 它们都属于耗散结构的范畴。 为了从各不相同的耗散结构实例中找出其本质的特征和规律,普里戈津学派研究了非平衡 热力学,继承和发展了前人关于物理学中相变的理论,运用了当代非线性微分方程以及随机过程 的数学知识,揭示出耗散结构有如下几方面的基本特点。
首先,产生耗散结构的系统都包含有大量的系统基元甚至多层次的组分。贝纳德效应中的液 体包含大量分子。天空中的云包含有由水分子组成的水蒸气、液滴,水晶和空气,因而是含有多组 分多层次的系统。至于贝洛索夫——萨波金斯基反应,其中不仅含有大量分子原子和离子,并且 有许多化学成分。不仅如此,在产生耗散结构的系统中,基元间以及不同的组分和层次间还通常 存在着错综复杂的相互作用,其中尤为重要的是正反馈机制和非线性作用。正反馈可以看作自我 复制自我放大的机制,是“序”产生的重要因素,而非线性可以使系统在热力学分支失稳的基础 上重新稳定到耗散结构分支上。

第二,产生耗散结构的系统必须是开放系统,必定同外界进行着物质与能量的交换。天街 中的云一定会和周围的大气和云进行物质交并和外界进行能量交换。如欲维持贝洛索夫一萨 波金斯基反应中的时间、空间,时间——空间结构,则需不断地向进行反应的容器中注入所需的 化学物质,这正是系统与外界的物质交换。耗散结构之所以依赖于系统开放,是因为根据热力学 第二定律,一个孤立系统的熵要随时间增大直至极大值,此时对应最无序的平衡态,也就是说孤 立系统绝对不会出现耗散结构。而开放系统可以使系统从外界引入足够强的负熵流来抵消系统 本身的熵产生而使系统总熵减少或不变,从而使系统进入或维持相对有序的状态。

第三,产生耗散结构的系统必须处于远离平衡的状态。为了简单说朋问题,先举一个有关平 衡状态的例子。假定暖水瓶是完全隔热的,里边放入温水,盖上瓶塞,其中的水不再受外界任何 影响,最后水就进入一种各处温度均匀,没有宏观流动和翻滚且不再随时间改变的状态,叫平衡 态,相应的结构称为平衡结构。根据热力学理论,在这种状态下是不可能出现任何耗散结构的。如 果把瓶塞打开,用细棒搅拌瓶中的水,这时系统内发生翻滚流动,脱离平衡态。但若重新盖上瓶 塞,经过足够长时间,系统又将不可避免的驰豫到新的平衡态,仍不会有耗散结构。这表明系统 虽走出了平衡态,但离开平衡态不够“远”。要想使系统产生耗散结构,就必须通过外界的物质流 和能量流驱动系统使它远离平衡至一定程度,至少使其越过非平衡的线性区,即进入非线性区。 最明显的例子是贝纳德效应,若上下温差很小,不会出现六角形花纹,表明系统离开平衡态不够 远。待温差达到一定程度,即离开平衡态足够远,才发生贝纳德对流。这里强调指出,耗散结构与 平衡结构有本质的区别。平衡结构是一种“死”的结构,它的存在和维持不依赖于外界、而耗散结 构是个“活”的结构,它只有在非平衡条件下依赖于外界才能形成和维持。由于它内部不断产生 熵,就要不断地从外界引入负熵流,不断进行“新陈代谢”过程,一旦这种“代谢”条件被破坏,这个 结构就会“窒息而死”。所有自然界的生命现象都必须用第二种结构来解释。

第四,耗散结构总是通过某种突变过程出现的,某种临界值的存在是伴随耗散结构现象的一 大特征,如贝纳德对流,激光,化学振荡均是系统控制参量越过一定阈值时突然出现的。 最后,耗散结构的出现是由于远离平衡的系统内部涨落被放大而诱发的。什么是涨落呢?举 个例子,密闭容器内的气体,如果不受周围环境的影响或干扰,就会像前面所说的那样达到平衡 态,不难想象,这时容器内各处气体的密度是均匀的。然而由于大量气体分子作无规则热运动而 且相互碰撞,可能某瞬时容器内某处的密度略微偏大,另一瞬时又略微偏小,即密度在其平均值 上下波动。这种现象就叫涨落。如果仅限于讨论处于平衡态气体内部的涨落,意义并不十分大。 虽然无规则运动和碰撞的存在将不时产生相对于平衡的偏差。但由于同样的原因这种偏差又不 断地平息下去,从而平衡得以维持。在远离平衡时,意义就完全不同了,微小的涨落就能不断被 放大使系统离开热力学分支而进入新的更有序的耗散结构分支。涨落之所以能发挥这么大的作 用是因为热力学分支的失稳已为这一切准备好了必要的条件,涨落对系统演变所起的是一种触 发作用。

综述以上各点概括起来说,所谓耗散结构就是包含多基元多组分多层次的开放系统处于远 离平衡态时在涨落的触发下从无序突变为有序而形成的一种时间,空间或时间——空间结构。 耗散结构理论的提出对当代哲学思想产生了深远的影响,该理论引起了哲学家们的广泛注 意。在耗散结构理论创立前,世界被一分为二:其一是物理世界,这个世界是简单的、被动的、僵死 的,不变的可逆的和决定论的量的世界;另一个世界是生物界和人类社会,这个世界是复杂的、 主动的、活跃的、进化的,不可逆和非决定论的质的世界。物理世界和生命世界之间存在着巨大的 差异和不可逾越的鸿沟,它们是完全分离的,从而伴随而来的是两种科学,两种文化的对立。而 耗散结构理论则在把两者重新统一起来的过程中起着重要的作用。耗散结构理论极大地丰富了 哲学思想,在可逆与不可逆,对称与非对称,平衡与非平衡,有序与无序、稳定与不稳定,简单与复 杂,局部与整体,决定论和非决定论等诸多哲学范畴都有其独特的贡献。 耗散结构理论可以应用于研究许多实际现象。上面所谈的“天街、贝纳德效应以及贝洛索夫 ——萨波金斯基反应分别属于物理和化学范畴,值得提到的是在生命现象中也包含有多层次多 组分,例如从种群、个体、器官、组织、细胞以及于生物分子,各层次间以及同一层次的各种组分间 存在着更为复杂的相互作用。生命系统需要新陈代谢,因而必定是开放系统。再者生命系统必然 是远离平衡的。因此生命系统成为耗散结构理论应用的对象是十分自然的。这方面目前取得较多 进展的有动物体内释放能量的生化反应糖酵解的时间振荡,还有关于肿瘤免疫监视的问题以及 一些生态学中的问题。

从广义讲,人类社会也是远离平衡的开放系统。因此,像都市的形成发展, 城镇交通,航海捕鱼,教育经济问题等社会经济问题也可作为耗散结构理论应用的领域。 耗散结构理论自提出以来,一直在理论和实际应用两个方面同时拓展,今后的发展也可望顺 着这个路子往下走。因为并非一切远离平衡的复杂性开放系统的行为都可以归纳为耗散结构,所 以,作为更高层次的一般研究复杂系统的系统科学的一个分支理论,面对纷繁复杂的实际世界, 其未来充满挑战,也面对机会,可谓任重道远。