自贡到乐山动车:谁能给我 讲解下 前端总线 FSB 外频 主频 外频 倍频 之间的关系 和性能搭配 的关系

来源:百度文库 编辑:高校问答 时间:2024/04/29 01:06:22

前端总线是处理器与主板北桥芯片或内存控制集线器之间的数据通道,其频率高低直接影响CPU访问内存的速度。
电脑时钟是由主板晶振提供时钟,称为系统总线频率,cpu的实际运行频率是通过内部倍频技术提供,所以要比系统频率(又称外频)高2的整数倍。如:外频100,倍频为4,则cpu主频即为100*4=400。
前端总线(front side bus)是cpu和北桥芯片组通讯的通道(内存和cpu交换数据就是通过北桥芯片组),通常,前端总线频率要高于外频。但是与cpu主频不一样的是,前端总线不是通过倍频技术来提高前端总线频率(由于内存部件自身频率不能太高),而是通过变相增加前端总线宽度的办法实现相对升频。具体而言,P4的外频为100(133),但是采用了多通路的技术将内核到内存与北桥的总线宽度相对增大,也就是前端总线(FSB)宽度相对增大,换句话说,物理总线宽度不变,不过采用了多路并行传输技术,让总线宽度等价于增宽。系统总线是物理位宽,而FSB是实际位宽(注意,是位宽,而不是带宽),目前流行的处理器都采用了不同的技术增大自己处理器的位宽,以达到增强处理器性能的目的。现在明白了吗?

以下是CPU的相关技术参数
(1)主频
主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人以为认为CPU的主频指的是CPU运行的速度,实际上这个认识是很片面的。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力是没有直接关系的。当然,主频和实际的运算速度是有关的,但是目前还没有一个确定的公式能够实现两者之间的数值关系,而且CPU的运算速度还要看CPU的流水线的各方面的性能指标。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。因此主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。

(2)外频
外频是CPU的基准频率,单位也是MHz。外频是CPU与主板之间同步运行的速度,而且目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。

(3)前端总线(FSB)频率
前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。由于数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据带宽)/8。外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8Byte/bit=800MB/s。

(4)倍频系数
倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应——CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。

DIY术语

硬件系统:电脑的硬件系统由输入设备、主机和输出设备组成。外部信息经输入设备输入主机,由主机分析、加工、处理,再经输出设备输出。
输入输出设备:电脑只能识别二进制数字电信号,而人们习惯于接受图文声像信号。输入输出设备起着信号转换和传输的作用。我们常用键盘输入文字,用麦克风输入声音,用数码像机、扫描仪和摄影机输入图像。常用输出设备有显示器、打印机和喇叭。
一、CPU
CPU(中央处理器)是电脑的核心,作为系统的心脏,CPU的档次决定了整台机器的处理水平,其性能的高低直接影响全局。电脑处理数据的能力和速度主要取决于CPU。通常用位长和主频评价CPU的能力和速度,如PⅡ300 CPU能处理位长为32位的二进制数据, 主频为300MHz。
1、主频、倍频、外频:主频也就是CPU的时钟频率,英文全称是CPU Clock Speed,简单地说也就是CPU运算时的工作频率。一般说来,主频越高,一个时钟周期内完成的指令数也越多,当然CPU的速度也就越快了。不过由于各种各样的CPU它们的内部结构也不尽相同,所以并非所有的时钟频率相同的CPU的性能都一样。至于外频就是系统总线的工作频率;而倍频则是指CPU外频与主频相差的倍数。三者是有十分密切的关系的:主频=外频×倍频。
2、内存总线速度:英文全称Memory-Bus Speed。CPU处理的数据是从主存储器那里来的,而主存储器指的就是我们平常所说的内存了。一般我们存放在外存(磁盘或各种存储介质)上的资料都要通过内存,再进入CPU进行处理。所以与内存之间的通道——内存总线的速度对整个系统性能就显得很重要了,由于内存和CPU之间的运行速度或多或少会有差异,因此便出现了二级缓存,来协调两者之间的差异,而内存总线速度就是指CPU与二级(L2)高速缓存和内存之间的通信速度。
3、扩展总线速度:英文全称Expansion-Bus Speed。扩展总线指的就是指安装在微机系统上的局部总线,如VESA或PCI总线,我们打开电脑时会看见一些插槽般的东西,这些就是扩展槽,而扩展总线就是CPU联系这些外部设备的桥梁。
4、工作电压:英文全称Supply Voltage。任何电器在工作的时候都需要电,自然也会有额定的电压,CPU当然也不例外,工作电压指的也就是CPU正常工作所需的电压。随着CPU的制造工艺与主频的提高,近年来各种CPU的工作电压有逐步下降的趋势,以解决发热过高的问题。最新的P 4处理器的电压已经降为1.5V左右了。
5、地址总线宽度:地址总线宽度决定了CPU可以访问的物理地址空间,简单地说就是CPU到底能够使用多大容量的内存。对于386以上的微机系统,地址线的宽度为32位,最多可以直接访问4096MB(4GB)的物理空间。
6、数据总线宽度:数据总线负责整个系统的数据流量的大小,而数据总线宽度则决定了CPU与二级高速缓存、内存以及输入/输出设备之间一次数据传输的信息量。
7、L1高速缓存:即是我们常说的一级高速缓存。在CPU里面内置了高速缓存可以提高CPU的运行效率。内置的L1高速缓存的容量和结构对CPU的性能影响较大,容量越大,性能也相对会提高不少,所以这也正是一些公司力争加大L1级高速缓冲存储器容量的原因。
8、L2高速缓存:即是上面提到的二级缓存,它的作用就是为了协调CPU运行速度与内存存取速度之间的差异,二级缓存对提高CPU的运行性能也有很大的帮助,但由于CPU芯片面积、散热条件及生产成本等限制,二级缓存也不可能做得太大。
9、动态处理:动态处理是应用在高能奔腾处理器中的新技术,创造性地把三项专为提高处理器对数据的操作效率而设计的技术融合在一起。这三项技术是多路分流预测、数据流量分析和猜测执行。动态处理并不是简单执行一串指令,而是通过操作数据来提高处理器的工作效率。
综合评价,目前一块性能优良的CPU应具有:133MHz的外频、32KB的L1高速缓存、256KB的L2高速缓存、1.5V的工作电压。而众所周知,Intel、AMD是全球两个CPU生主厂家,其系列产品均可选购,而读者只需要注意在选购时量力而行。
二、主板
主板:也称主机板,是安装在主机机箱内的一块矩形电路板,上面安装有电脑的主要电路系统。主板的类型和档次决定着整个微机系统的类型和档次,主板的性能影响着整个微机系统的性能。主板上安装有控制芯片组、BIOS芯片和各种输入输出接口、键盘和面板控制开关接口、指示灯插接件、扩充插槽及直流电源供电接插件等元件。CPU、内存条插接在主板的相应插槽(座)中,驱动器、电源等硬件连接在主板上。主板上的接口扩充插槽用于插接各种接口卡,这些接口卡扩展了电脑的功能。常见接口卡有显示卡、声卡等。
1、系统总线:系统总线是连接扩充插槽的信息通路。ISA和PCI总线是目前PC机常用系统总线,主板上相应有ISA和PCI插槽。
2、输入输出接口:简称I/O接口,是连接主板与输入输出设备的界面。主机后侧的串口、并口、键盘接口、PS/2接口、USB接口以及主机内部的硬盘、软驱接口都是输入输出接口。
3、串行通讯接口(RS-232-C):简称串行口,是电脑与其它设备传送信息的一种标准接口。现在的电脑至少有两个串行口COM1和COM2。
4、并行通讯接口:简称并行口,是电脑与其它设备传送信息的一种标准接口,这种接口将8位数据位同时并行传送,并行口数据传送速度较串行口快,但传送距离较短。并行口使用25孔D形连接器,常用于连接打印机。
5、EIDE接口:也称为扩展IDE接口,主板上连接EIDE设备的接口。常见EIDE设备有硬盘和光驱。目前较新的接口标准还有Ultra DMA/33、Ultra DMA/66。
6、AGP:即“加速图形端口”,是Intel公司在1996年7月提出的显示卡接口标准,通过主板上的AGP插槽连接AGP显示卡。PCI总线的传输速度只能达到132MB/s,而AGP端口则能达到528MB/s,传输速度四倍于前者。AGP技术使图形显示(特别是3D图形)的性能有了极大的提高,使PC机在图形处理技术上又向前迈了一大步。
7、BIOS:BIOS是一个程序,即微机的基本输入输出系统,BIOS程序的主要功能是对电脑的硬件进行管理。BIOS程序是电脑开机运行的第一个程序。开机后BIOS程序首先检测硬件,对系统进行初始化,然后启动驱动器,读入操作系统引导记录,将系统控制权交给磁盘引导记录,由引导记录完成系统的启动。电脑运行时,BIOS还配合操作系统和软件对硬件进行操作。BIOS程序存放在主机板上的ROM BIOS芯片中。当前586主板大多使用Flash ROM存储BIOS程序,Flash ROM中的程序(数据)可以通过运行程序更新。
8、CMOS:CMOS是主板上一块可读写的RAM芯片,用于保存当前系统的硬件配置信息和用户设定的某些参数。CMOS RAM由主板上的电池供电,即使系统掉电信息也不会丢失。对CMOS中各项参数的设定和更新需要运行专门的设置程序,开机时通过特定的按键(一般是Del键)就可进入BIOS设置程序,对CMOS进行设置。CMOS设置习惯上也被叫做BIOS设置。
9、芯片组(ChipSet):芯片就是一块集成电路片,它是内部元件、功能和引脚比较多的芯片的集合体。早期的主板是由许多TTL芯片和一些LSI的芯片所组合而成,所以一块大AT的主板就有一百多块芯片元件,生产一块主板不但耗时费力而且成本高。后来美国一家名叫晶技的公司(Chips)把一百多块芯片元件,浓缩为五块大芯片组和几块TTL芯片组合成的一块叫Baby Size或称AT的主板芯片组。由于这种主板的芯片组把许多的芯片电路集合在一块狭窄的芯片里,当材质不佳或和技术不成熟时,会造成高频的干扰、温度的增加和特性的匹配不良时会发生不稳定的情况,所以AT主板结构大概经过一两年的改善,在技术、材质已有突破,从而奠定了以后芯片组的基本结构。目前比较新的,功能比较多的芯片组采用BGA的封装,可设计300至800多根引脚。
10、BGA芯片组:BGA球形阵列封装是Ball Grid Array的缩写,引脚的焊接是以球形阵列方式排列,分布于芯片的背面,再加温与电路板相连接,以增加芯片的引脚数,其封装的脚数为QFP封装的2.5倍。目前300至800引脚芯片的引脚距低于0.3mm时,即以BGA的封装设计,如Pentium TX系列的芯片即为BGA的封装,所以BGA是可缩小电路体积、降低成本和多引脚芯片的主要封装,是半导体封装业的主流,也是必然采用的高级封装技术。
11、硬件监视(Hardware Monitoring):犹如幕后监视器,随时侦测系统硬件的物理状态是否出现超负荷或其他潜在的不稳定因素,如电源风扇是否停转,电压是否稳定,芯片温度是否超过限定值等等。一旦某一部分出现异常,将迅速提醒使用者结束当前任务,检查系统硬件,避免突然死机造成不必要的损失。
11、高级配置和电源接口(ACPI:Advanced Configuration Power Interface):ACPI是一种高级的电源管理系统,深入到计算机内部各部件,并且在操作系统和应用程序运行过程中尽可能地节约电能,如硬盘在一定时间内没有读写数据,硬盘电源将自动切断,马达停止转动;计算机若长时间不工作,显示器将变黑;软件运行过程中,不参与工作的器件将停止供电。
12、PS/2接口:很多品牌机上采用PS/2口来连接鼠标和键盘。PS/2接口与传统的键盘接口除了在接口外型、引脚有不同外,在数据传送格式上是相同的。现在很多586主板用PS/2接口插座连接键盘,传统接口的键盘可以通过PS/2接口转换器连接主板PS/2接口插座。
三、内存
内存储器:简称内存,用于存放当前待处理的信息和常用信息的半导体芯片。容量不大,但存取迅速。内存包括RAM、ROM和Cache。为了能让电脑发挥出最大的效能,内存作为个人电脑硬件的必要组成部分之一,它的地位越发重要起来。在现在看来,内存的容量与性能已成为决定微机整体性能的一个决定性因素,因此为了提高个人电脑的整体性能,给你的电脑足够的内存就成为问题关键所在。
1、RAM:RAM(随机存取存储器)是电脑的主存储器,人们习惯将RAM称为内存。RAM的最大特点是关机或断电数据便会丢失。内存越大的电脑,能同时处理的信息量越大。我们用刷新时间评价RAM的性能,单位为ns(纳秒),刷新时间越小存取速度越快。586电脑常用RAM有EDO RAM和SDRAM,存储器芯片安装在手指宽的条形电路板上,称之为内存条。内存条安装在主板上的内存条插槽中。按内存条与主板的连接方式有30线、72线和168线之分。目前装机常用168线、刷新时间为10ns、容量为32M(或64M)的SDRAM内存条。
2、Cache:Cache(高速缓冲存储器)是位于CPU与主内存间的一种容量较小但速度很高的存储器。由于CPU的速度远高于主内存,CPU直接从内存中存取数据要等待一定时间周期,Cache中保存着CPU刚用过或循环使用的一部分数据,当CPU再次使用该部分数据时可从Cache中直接调用,这样就减少了CPU的等待时间,提高了系统的效率。Cache又分为一级Cache(L1 Cache)和二级Cache(L2 Cache),L1 Cache集成在CPU内部,L2 Cache一般是焊在主板上,常见主板上焊有256KB或512KB L2 Cache。
3、ROM:ROM(只读存储器)是一种存储计算机指令和数据的半导体芯片,但只能从其中读出数据而不能写入数据,关机或断电后ROM的数据不会丢失。生产厂商把一些重要的不允许用户更改的信息和程序存放在ROM中,例如存放在主板和显示卡ROM中的BIOS程序。
4、时钟周期:它代表SDRAM所能运行的最大频率。显然这个数字越小说明SDRAM芯片所能运行的频率就越高。对于一片普通的PC100 SDRAM来说,它芯片上的标识-10代表了它的运行时钟周期为10ns,即可以在100MHz的外频下正常工作。
5、存取时间:目前大多数SDRAM芯片的存取时间为5、6、7、8或10ns。这可不同于系统时钟频率,它们二者之间是有着本质的区别。比如一种LG的PC100 SDRAM,它芯片上的标识为“-7J”或“-7K”,这代表了它的存取时间为7ns。而许多人都把这个存取时间当作它的时钟频率,其实它的系统时钟频率依然是10ns,外频为100MHz。
6、CAS的延迟时间:CAS(Column Address Strobe,列地址控制器)是纵向地址脉冲的反应时间,也是在一定频率下衡量支持不同规范的内存的重要标志之一。比如现在大多数的SDRAM(在外频为100MHz时)都能运行在CAS Latency Time(CAS的等待时间)等于2或3的模式下,也就是说这时它们读取数据的延迟时间可以是二个时钟周期也可以是三个时钟周期(当然在延迟时间为二个时钟周期时,SDRAM会有更高的效能)。在SDRAM的制造过程中,可以将这个特性写入SDRAM的SPD芯片中,在开机时主板的BIOS就会检查此项内容,并以SPD中的默认模式运行。
7、综合性能的评价:对于PC100内存来说,就是要求当CL=3的时候,tCK (System clock cycle time)的数值要小于10ns、tAC(Access time from CLK)要小于6ns。CL=3时,对于同一个内存条当设置成不同CL数值时,tCK的值是很可能不相同的,当然tAC的值也是不太可能相同的。关于总延迟时间的计算一般用这个公式:总延迟时间=系统时钟周期×CL(CAS Latency)模式数+存取时间,比如某PC100内存的存取时间为6ns,我们设定CL模式数为2(即CAS Latency=2),则总延迟时间=10ns×2+6ns=26ns。这就是评价内存性能高低的重要数值。