倩女幽魂纯音乐笛子:请问什么是缓存?一级和二级有什么区别?

来源:百度文库 编辑:高校问答 时间:2024/05/11 04:41:58
它的评价对象是什么?

由于CPU的运算速度愈来愈快,主存储器(DRAM)的数据存取速度常无法跟上CPU的速度,因而影响计算机的执行效率,如果在CPU与主存储器之间,使用速度最快之SRAM来作为CPU的数据快取区,将可大幅提升系统的执行效率,而且透过Cache来事先读取CPU可能需要的数据,可避免主存储器与速度更慢的辅助内存的频繁存取数据,对系统的执行效率也大有帮助。

不过因SRAM比DRAM贵太多,如果主存储器全采用SRAM则系统造价太高,所以一般皆只安装512KB~1MB的Cache。Cache的应用除了加在CPU与主存储器之间外,硬盘、打印机、CD-ROM等外围设备也都会加上Cache来提升该设备的数据存取效率。

按照数据读取顺序和与CPU结合的紧密程度,CPU缓存可以分为一级缓存,二级缓存,部分高端CPU还具有三级缓存,每一级缓存中所储存的全部数据都是下一级缓存的一部分,这三种缓存的技术难度和制造成本是相对递减的,所以其容量也是相对递增的。当CPU要读取一个数据时,首先从一级缓存中查找,如果没有找到再从二级缓存中查找,如果还是没有就从三级缓存或内存中查找。一般来说,每级缓存的命中率大概都在80%左右,也就是说全部数据量的80%都可以在一级缓存中找到,只剩下20%的总数据量才需要从二级缓存、三级缓存或内存中读取,由此可见一级缓存是整个CPU缓存架构中最为重要的部分。

一级缓存(Level 1 Cache)简称L1 Cache,位于CPU内核的旁边,是与CPU结合最为紧密的CPU缓存,也是历史上最早出现的CPU缓存。由于一级缓存的技术难度和制造成本最高,提高容量所带来的技术难度增加和成本增加非常大,所带来的性能提升却不明显,性价比很低,而且现有的一级缓存的命中率已经很高,所以一级缓存是所有缓存中容量最小的,比二级缓存要小得多。

一般来说,一级缓存可以分为一级数据缓存(Data Cache,D-Cache)和一级指令缓存(Instruction Cache,I-Cache)。二者分别用来存放数据以及对执行这些数据的指令进行即时解码,而且两者可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。目前大多数CPU的一级数据缓存和一级指令缓存具有相同的容量,例如AMD的Athlon XP就具有64KB的一级数据缓存和64KB的一级指令缓存,其一级缓存就以64KB+64KB来表示,其余的CPU的一级缓存表示方法以此类推。

楼主请看网页:
http://www.iteve.com/test/2006/01/13/20060113103513_1139251760.html

高速缓冲存储器Cache是位于CPU与内存之间的临时存储器,它的容量比内存小但交换速度快。

在Cache中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从Cache中调用,从而加快读取速度。由此可见,在CPU中加入Cache是一种高效的解决方案,这样整个内存储器(Cache+内存)就变成了既有Cache的高速度,又有内存的大容量的存储系统了。

Cache对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与Cache间的带宽引起的。

高速缓存的工作原理

1、读取顺序

CPU要读取一个数据时,首先从Cache中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入Cache中,可以使得以后对整块数据的读取都从Cache中进行,不必再调用内存。

正是这样的读取机制使CPU读取Cache的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在Cache中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先Cache后内存。

2、缓存分类

前面是把Cache作为一个整体来考虑的,现在要分类分析了。Intel从Pentium开始将Cache分开,通常分为一级高速缓存L1和二级高速缓存L2。

在以往的观念中,L1 Cache是集成在CPU中的,被称为片内Cache。在L1中还分数据Cache(I-Cache)和指令Cache(D-Cache)。它们分别用来存放数据和执行这些数据的指令,而且两个Cache可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。

在P4处理器中使用了一种先进的一级指令Cache——动态跟踪缓存。它直接和执行单元及动态跟踪引擎相连,通过动态跟踪引擎可以很快地找到所执行的指令,并且将指令的顺序存储在追踪缓存里,这样就减少了主执行循环的解码周期,提高了处理器的运算效率。

以前的L2 Cache没集成在CPU中,而在主板上或与CPU集成在同一块电路板上,因此也被称为片外Cache。但从PⅢ开始,由于工艺的提高L2 Cache被集成在CPU内核中,以相同于主频的速度工作,结束了L2 Cache与CPU大差距分频的历史,使L2 Cache与L1 Cache在性能上平等,得到更高的传输速度。

L2Cache只存储数据,因此不分数据Cache和指令Cache。在CPU核心不变化的情况下,增加L2 Cache的容量能使性能提升,同一核心的CPU高低端之分往往也是在L2 Cache上做手脚,可见L2 Cache的重要性。现在CPU的L1 Cache与L2 Cache惟一区别在于读取顺序。

3、读取命中率

CPU在Cache中找到有用的数据被称为命中,当Cache中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。从理论上讲,在一颗拥有2级Cache的CPU中,读取L1 Cache的命中率为80%。也就是说CPU从L1 Cache中找到的有用数据占数据总量的80%,剩下的20%从L2 Cache读取。由于不能准确预测将要执行的数据,读取L2的命中率也在80%左右(从L2读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。在一些高端领域的CPU(像Intel的Itanium)中,我们常听到L3 Cache,它是为读取L2 Cache后未命中的数据设计的—种Cache,在拥有L3 Cache的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。

为了保证CPU访问时有较高的命中率,Cache中的内容应该按一定的算法替换。一种较常用的算法是“最近最少使用算法”(LRU算法),它是将最近一段时间内最少被访问过的行淘汰出局。因此需要为每行设置一个计数器,LRU算法是把命中行的计数器清零,其他各行计数器加1。当需要替换时淘汰行计数器计数值最大的数据行出局。这是一种高效、科学的算法,其计数器清零过程可以把一些频繁调用后再不需要的数据淘汰出Cache,提高Cache的利用率。

缓存技术的发展

总之,在传输速度有较大差异的设备间都可以利用Cache作为匹配来调节差距,或者说是这些设备的传输通道。在显示系统、硬盘和光驱,以及网络通讯中,都需要使用Cache技术。但Cache均由静态RAM组成,结构复杂,成本不菲,使用现有工艺在有限的面积内不可能做得很大,不过,这也正是技术前进的源动力,有需要才有进步!