社区出租房管理制度:什么是太空黑洞

来源:百度文库 编辑:高校问答 时间:2024/04/27 05:04:14

是一种天体 引力大的可以把光吸进去 由于光不能出来进而不能反射到我们的眼睛里 所以我们称之为黑洞

简单的说是太阳上温度普遍较高
那些温度相对比较低的地方 在我们眼睛中呈现稍暗的颜色
就是太阳黑子

中子星和黑洞是宇宙中密度和引力最强大的两类颇具神秘感的天体。光是中子星就已经够不可思议了,偏偏还要添上黑洞。它是宇宙中的死亡陷井和无底深渊,没有物质能摆脱它的强大引力,包括光线。在它附近,今天的所有物理定律都显得不适用了。

我们知道,当恒星走完其漫长的一生后,小质量和中等质量的恒星将成为一颗白矮星,大质量和超大质量的恒星则会导致一次超新星爆发。超新星爆发后恒星如何演变将取决于剩下星核的质量。印度天体物理学家昌德拉塞卡于上世纪三十年代末发现,当留下的星核质量达到太阳的一点四倍时,其引力将大到足以把星核内的原子压缩到使电子和质子结合成中子的程度。此时这颗星核就成了一颗中子星,其密度相当于把一个半太阳的质量塞进直径约二十四公里的一个核内。

中子星的表面温度约为一百十万度,辐射χ射线、γ射线和和可见光。中子星有极强的磁场,它使中子星沿着磁极方向发射束状无线电波(射电波)。中子星自转非常快,能达到每秒几百转。中子星的磁极与两极通常不吻合,所以如果中子星的磁极恰好朝向地球,那么随着自转,中子星发出的射电波束就会象一座旋转的灯塔那样一次次扫过地球,形成射电脉冲。人们又称这样的天体为“脉冲星”。

超新星爆发后,如果星核的质量超过了太阳质量的两至三倍,那它将继续坍缩,最后成为一个体积无限小而密度无穷大的奇点,从人们的视线中消失。围绕着这个奇点的是一个“无法返回”的区域,这个区域的边界称为“视野”或“事件地平”,区域的半径叫做“史瓦西半径”。任何进入这个区域的物质,包括光线,都无法摆脱这个奇点的巨大引力而逃逸,它们就像掉进了一个无底深渊,永远不可能返回。

天文学家称这种由于恒星死亡形成的天体为恒星级黑洞。一般认为,宇宙中的大多数黑洞是由恒星坍缩形成的。此外,在许多恒星系的中心也有一个因引力坍缩而形成的超大质量黑洞,比如在类星体星系的中心。在宇宙诞生初期可能曾经形成过很多微型黑洞(太初黑洞),这些黑洞的体积很小,质量相当于一座大山。

虽然黑洞本身不可见,但可以用至少两种方法检测出它的存在。当一个黑洞吸引尘埃、气体或恒星时,它的强大引力会把这些物质撕碎成原子微粒,原子微粒会从黑洞的边缘沿螺旋线坠向中心,速度会越来越快,直至达到每秒九百多公里。当物体被黑洞吞没时,会因为互相碰撞而使温度上升到几百万度,并发出χ射线和γ射线。在宇宙中,只有黑洞能使物体在密集的轨道上加速到如此高的速度;也只有黑洞才会以这种方式发射χ射线和γ射线。

任何物质或辐射到达黑洞边缘,越过它的视界就永远消失了。在黑洞的奇点附近,现有的任何物理定律都是不适用的。黑洞的奇点和我们现已认识的宇宙中的所有物质状态截然不同。到目前为止,还没有任何科学方法能用来测量黑洞。现在我们说找到了一个黑洞都是通过间接途径推算出来的。

黑洞是什么?
黑洞是爱因斯坦的广义相对论的最著名的预测之一。它提出了引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。
等恒星的半径小到一特定值(天文学上叫“史瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。

黑洞的形成
当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。
质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。
这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度(史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。

“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。
根据广义相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。
等恒星的半径小到一特定值(天文学上叫“史瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。实际上黑洞真正是“隐形”的,等一会儿我们会讲到。
那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。
我们曾经比较详细地介绍了白矮星和中子星形成的过程。当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。
质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。
这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度(史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。
与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。
在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。
更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背!
“黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。