怎么写工作感想和体会:胶体有什么性质?

来源:百度文库 编辑:高校问答 时间:2024/04/27 18:40:01

(1)丁达尔现象:

  当一束平行光线通过胶体时,从侧面看到一束光亮的“通路”。这是胶体中胶粒在光照时产生对光的散射作用形成的。对溶液来说,因分散质(溶质)微粒太小,当光线照射时,光可以发生衍射,绕过溶质,从侧面就无法观察到光的“通路”。因此可用这种方法鉴别真溶液和胶体。悬浊液和乳浊液,因其分散质直径较大,对入射光只反射而不散射,再有悬浊液和乳浊液本身也不透过,也不可能观察到光的通路。

  (2)布朗运动:

  胶体中胶粒不停地作无规则运动。其胶粒的运动方向和运动速率随时会发生改变,从而使胶体微粒聚集变难,这是胶体稳定的一个原因。布朗运动属于微粒的热运动的现象。这种现象并非胶体独有的现象。

  (3)电泳现象:

  胶粒在外加电场作用下,能在分散剂里向阳极或阴极作定向移动,这种现象叫电泳。电泳现象表明胶粒带电。胶粒带电荷是由于它们具有很大的总表面积,有过剩的吸附力,靠这种强的力吸附着离子。一般来说,金属氢氧化物、金属氧化物的胶体微粒吸附阳离子,带正电荷,如 胶体和 胶体微粒。非金属氧化物、金属硫化物胶体微粒吸附阴离子,带负电荷。如 胶体, 胶体的微粒。当然,胶体中胶粒带的电荷种类可能与反应时用量有关。 胶体微粒在 过量时带负电荷, 过量时带正电荷。胶粒带电荷,但整个胶体仍是显电中性的。

  同种溶液的胶粒带相同的电荷,具有静电斥力,胶粒间彼此接近时,会产生排斥力,所以胶体稳定,这是胶体稳定的主要而直接的原因。

  (4)凝聚:

  胶体中胶粒在适当的条件下相互结合成直径大于 的颗粒而沉淀或沉积下来的过程。如在 胶本中加入适当的物质(电解质), 胶体中胶粒相互聚集成 沉淀。

  胶体稳定的原因是胶粒带有某种相同的电荷互相排斥而稳定,及胶粒间无规则的热运动也使胶粒稳定。

  胶体凝聚的原理:

  中和胶粒的电荷

  加快其胶粒的热运动及增加胶粒的结合机会,使胶粒聚集而沉淀下来。

  胶体凝聚的方法:

  A、加入电解质。

  在溶液胶中加入电解质,这就增加了胶体中离子的总浓度,而给带电荷的胶体微粒创造了吸引相反电荷离子的有利条件,从而减少或中和原来胶粒所带电荷,使它们失去了保持稳定的因素。这时由于粒子的布朗运动,在相互碰撞时,就可以聚集起来,迅速沉降。

  如由豆浆做豆腐时,在一定温度下,加入 (或其他电解质溶液),豆浆中的胶体微粒带的电荷被中和,其中的微粒很快聚集而形成胶冻状的豆腐(称为凝胶)。

  一般说来,在加入电解质时,高价离子比低价离子使胶体凝聚的效率大。如: , 。

  B、加入胶粒带相反电荷的胶体。

  以适当的数量相混合时,也可以起到和加入电解质同样的作用,使胶体相互聚沉。

  如把 胶体加入硅酸胶体中,两种胶体均会发生凝聚。

  C、加热胶体。

  能量升高胶粒运动加剧,它们之间碰撞机会增多,而使胶核对离子的吸附作用减弱,即减弱胶体的稳定因素,导致胶体凝聚。

  如:长时间加热时, 胶体就发生凝聚而出现红褐色沉淀。

胶体的性质与以前学生所学某具体元素或化合物的性质不同,它不是物质结构的反映,而是物质存在状态的反映。

十谈胶体

高中化学选修教材的《胶体》一节,由于展开不够充分,使不少学生和教师难以把握有关内容,出现了一系列的模糊认识。我们把这些问题搜集起来,并根据我们的理解来谈一谈有关《胶体》的疑难问题。

一、溶胶是怎样的概念 胶体从外观上看貌似均匀,与溶液没什么差异,因此胶体常称为溶胶。溶胶与胶体是同一个概念。

二、对淀粉、蛋白质等高分子溶于水形成的分散系,为什么有时称其为溶液,有时又称其为胶体 教材中是按分散质微粒直径的大小来给分散系分类的。淀粉、蛋白质等高分子溶于水形成的分散系可称为胶体。但是判断一种分散系是属于胶体还是溶液,单从分散质微粒直径的大小这一方面来考察,其结论是不全面的,甚至是错误的。正确判断一种分散系是溶液还是胶体,还要看分散质微粒的结构。如果分散质微粒的结构简单,比如是单个的分子或较小聚合度的分子或离子,那么这样的分散系应称为溶液。由于淀粉、蛋白质溶于水后都是以单个分子的形式分散在水中的,因此,尽管这些高分子很大,这些分散系仍应称为溶液。只是因为高分子的大小与胶粒相仿,高分子溶液才具有胶体的一些特性,如扩散慢、不通过半透膜、有丁达尔现象等。化学上常把Fe(OH)3,AgI等难溶于水的物质形成的胶体称为憎液胶体,简称溶胶;而把淀粉、蛋白质等易溶于水的物质形成的分散系称为亲液胶体,更多地是称为高分子溶液。

三、溶液是均一的,胶体也均一吗 憎液溶胶的分散质微粒是由很大数目的分子构成,因此是不均一的;高分子溶液中的分散质微粒是单个的分子,因此是均一的。

四、胶体能在较长时间内稳定存在的原因是什么 憎液溶胶的胶粒带有相同的电荷,由于同性电荷的排斥作用而使憎液胶体可以稳定存在。淀粉、蛋白质等高分子中含有多个极性基团(如—COOH,—OH,—NH2等),可以与水高度溶剂化(高分子表面形成水膜),因此也可较长时间稳定存在。很明显,这两类胶体稳定存在的原因是不同的。

五、溶液中的溶质微粒也作布朗运动吗 胶体微粒在各个方向上都受到分散剂分子的撞击,由于这些作用力不同,所以胶体微粒作布朗运动。溶液中的溶质微粒和分散剂分子大小相仿,因此溶质微粒的运动状况与胶体的胶粒运动状况是有差别的。由于胶体的丁达尔现象,用超显微镜才可以观察到胶粒的布朗运动。溶液无丁达尔现象,因此用超显微镜观察不到溶质微粒的运动状况。

六、凝聚与盐析有何差别 凝聚是憎液(水)胶体的性质,胶体的凝聚过程就是胶粒聚集成较大颗粒的过程。由于憎液(水)胶体的分散质都难溶于水,因此,再采用一般的溶解方法用水来溶解胶体的凝聚物是不可能的,也就是说,胶体的凝聚是不可逆的。盐析实际上就是加入电解质使分散质溶解度减小而使其析出的过程。盐析不是憎液胶体的性质,它是高分子溶液或普通溶液的性质,能发生盐析的分散质都是易溶的,如淀粉溶液、蛋白质溶液、肥皂的甘油溶液,由于分散质都是易溶的,所以盐析是可逆的。

七、蔗糖溶于水形成的分散系是溶液,为什么在生物课的渗透实验中,蔗糖分子却不能通过半透膜 不同的半透膜,如羊皮纸、动物膀胱膜、玻璃纸等,其细孔的直径是不同的,也就是说,不同的半透膜,其通透性是不一样的。显然,笼统地讲半透膜能使离子或分子通过,而不能使胶体微粒通过是不恰当的。

八、憎液胶体与高分子溶液在性质上有何异同 憎液胶体全面地表现出胶体的特性,高分子溶液则不然。这两种分散系中的分散质微粒都作布朗运动,都有丁达尔现象;憎液胶体有电泳现象,淀粉溶液无电泳现象,而蛋白质溶液则较为复杂;使憎液胶体凝聚的方法有:加入电解质、给胶体加热、加入带相反电荷的胶体,使高分子溶液中的分散质沉淀,主要是破坏高子分与分散剂间的相互作用,如加入大量的电解质也能使淀粉、蛋白质沉淀,这一现象称为盐析,它是可逆的。

九、有没有溶液能产生类似于胶体的电泳现象 由于溶液是均一的,不存在“界面”,因此,给溶液通电不会产生界面移动现象(即一极液面高,另一极液面低),但是有些溶液通电后却可以产生一极溶液颜色加深,另一极溶液颜色变浅的现象。比如,给紫红色KMnO4溶液通电一段时间后,阳极附近溶液的颜色就会变深,阴极附近溶液的颜色就会变浅。这是由于通电后,紫红色的MnO4-向阳极移动,但却不会在阳极放电(MnO4-远比OH-难放电)的缘故。CuSO4溶液就不会产生类似的现象,因为Cu2+会在阴极放电。

十、Fe(OH)3胶体长时间电泳或电压增大,将发生怎样的现象 如果Fe(OH)3胶体长时间电泳或将电泳的电压显著增大,都会在阴极出现凝聚现象,因为不论是长时间电泳还是电压显著增大,都会使阴极附近积聚很多的Fe(OH)3胶粒,大量胶粒的聚集必然会出现凝聚现象。如果电泳电压特别大,还会出现电解水的现象。